$$
\begin{aligned}
w T F=C A & \left\langle\lambda_{1}^{*}, \lambda^{n *}, \varphi^{*}, d^{+}, \lambda^{+}, f_{w}\right. \\
& R 1^{s}, R 2, R 3, R 4, O C, C P, \\
& F R, w^{2}, C W, T V \\
& \left.S_{e}, A_{e}, u_{e}, d_{e}\right\rangle
\end{aligned}
$$

* also any stands could be blue
t any combs of black/blve i all orientations egg.
ir 为 etc.
Tubing map
"blackboand orientation"

"opposite blackboard orientation"

A wen always has black on one side, blue on the other.

Adjoint operation: reverses arrow + bour Tricky when done the "over" (flown-through) stand:

Relatious:

$$
\begin{array}{ll}
w^{2} \quad f w & f w
\end{array} \quad \begin{aligned}
& f w
\end{aligned} \quad \begin{aligned}
& f w \\
& f w
\end{aligned}=0
$$

CW

$$
w-\quad=\{T=
$$

TV:

and all other blue/ black combos

R4 for vectices of different orientations:
Easy cas: it's all black

If there are blue strands, the corresponding R4 relations can be deduced from the A_{c} operations
Example

$$
\int_{x}^{\pi} \stackrel{A e}{\rightarrow} x_{x}^{\pi}
$$

$\downarrow \mathrm{Se}$

Unitarity

black $V^{+} \stackrel{A_{1} A_{2} A_{3}}{\rightleftarrows}$ blue V^{-}
blue $V^{+} \stackrel{A_{1} A_{2} A_{3}}{\rightleftarrows}$ black V^{-}

Problem $A_{1} A_{2} A_{3}(V)$ better nor be the same as $V \cdot W^{3}$

$$
A_{1} A_{2} A_{3}(V)
$$

$$
\langle\wedge \wedge \gamma \uparrow \not \approx y
$$ all colons operators: A_{i}, S_{i}, U_{i} relations for all colour \dot{q} ais relations of the form "what do we get when we apply each operation to each generator"

Is there an operation that just switches the colours of the while foam?

